Silencers, silencing, and heritable transcriptional states.

نویسندگان

  • P Laurenson
  • J Rine
چکیده

Three copies of the mating-type genes, which determine cell type, are found in the budding yeast Saccharomyces cerevisiae. The copy at the MAT locus is transcriptionally active, whereas identical copies of the mating-type genes at the HML and HMR loci are transcriptionally silent. Hence, HML and HMR, also known as the silent mating-type loci, are subject to a position effect. Regulatory sequences flank the silent mating-type loci and mediate repression of HML and HMR. These regulatory sequences are called silencers for their ability to repress the transcription of nearby genes in a distance- and orientation-independent fashion. In addition, a number of proteins, including the four SIR proteins, histone H4, and an alpha-acetyltransferase, are required for the complete repression of HML and HMR. Because alterations in the amino-terminal domain of histone H4 result in the derepression of the silent mating-type loci, the mechanism of repression may involve the assembly of a specific chromatin structure. A number of additional clues permit insight into the nature of repression at HML and HMR. First, an S phase event is required for the establishment of repression. Second, at least one gene appears to play a role in the establishment mechanism yet is not essential for the stable propagation of repression through many rounds of cell division. Third, certain aspects of repression are linked to aspects of replication. The silent mating-type loci share many similarities with heterochromatin. Furthermore, regions of S. cerevisiae chromosomes, such as telomeres, which are known to be heterochromatic in other organisms, require a subset of SIR proteins for repression. Further analysis of the transcriptional repression at the silent mating-type loci may lend insight into heritable repression in other eukaryotes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stage-specific epigenetic gene silencing during thymocyte lineage commitment

During lineage commitment, precursor cells must establish their signature gene expression programs to endow them with the requisite set of cellular functions. To maintain cellular identity, the gene expression program must be inherited stably by progeny of lineage-committed cells. Epigenetic regulation serves as a central mechanism to maintain such cellular memory. Although a lot of progress ha...

متن کامل

Position effect on the directionality of silencer function in Saccharomyces cerevisiae.

In Saccharomyces cerevisiae, silencers flanking the HML and HMR loci initiate the establishment of transcriptional silencing. We demonstrate that the activity of a silencer pertaining to its potency and directionality is dependent on its genomic position. The context of the HML-E silencer is more permissive to silencer function than that of HML-I or HMR-E, despite that HML-E and HML-I are only ...

متن کامل

Ordered nucleation and spreading of silenced chromatin in Saccharomyces cerevisiae.

In Saccharomyces cerevisiae, silencing at the HM loci depends on Sir proteins, which are structural components of silenced chromatin. To explore the structure and assembly of silenced chromatin, the associations of Sir proteins with sequences across the HMR locus were examined by chromatin immunoprecipitation. In wild-type cells, Sir2p, Sir3p, and Sir4p were spread throughout and coincident wit...

متن کامل

The molecular topography of silenced chromatin in Saccharomyces cerevisiae.

Heterochromatin imparts regional, promoter-independent repression of genes and is epigenetically heritable. Understanding how silencing achieves this regional repression is a fundamental problem in genetics and development. Current models of yeast silencing posit that Sir proteins, recruited by transcription factors bound to the silencers, spread throughout the silenced region. To test this mod...

متن کامل

Cooperative stabilization of the SIR complex provides robust epigenetic memory in a model of SIR silencing in Saccharomyces cerevisiae

How alternative chromatin-based regulatory states can be made stable and heritable in order to provide robust epigenetic memory is poorly understood. Here, we develop a stochastic model of the silencing system in Saccharomyces cerevisiae that incorporates cooperative binding of the repressive SIR complex and antisilencing histone modifications, in addition to positive feedback in Sir2 recruitme...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Microbiological reviews

دوره 56 4  شماره 

صفحات  -

تاریخ انتشار 1992